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Diffusion-limited evaporation of thin polar liquid films
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Abstract. The stability of evaporating very thin films of a polar liquid is investigated. The microscopic interaction
with the substrate and capillarity are taken into account in a lubrication equation. The stability of a flat interface
is studied when evaporation is limited by the diffusion of the vapour in the gas phase. The evaporation rate is
computed and evaporation is shown to be stabilizing. A stability phase diagram is obtained. A weakly nonlinear
analysis leads to a film-thickness amplitude equation that is non local in space. Physical consequences of the
results are eventually discussed.
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1. Introduction

The practical importance of thin liquid films and the numerous fundamental questions they
raise has stimulated many experimental and theoretical studies (e.g., see [1]). In particular, the
evaporation of thin films is of interest in drying technologies, and many instabilities driven
by evaporation are still unexplained. For instance, evaporation of droplets leads (through
Marangoni effects) to destabilizing surface tension gradients near the contact line: Redon
et al. [2], Poulard et al. [3] observed the contact line to become wavy, while Kavehpour et al.
[4] measured drop-height waves. Marangoni instabilities can also result from the evaporation
of a solute as shown by Hosoi and Bush [5] who re-examined the experiment of Fournier et al.
[6]. Their analysis, as that of O’Brien [7] for a different geometry, assumed a simple form for
the rate of evaporation of the solute. However, when there is no air convection, vapour diffuses
through air and the evaporation is diffusion limited as has been shown by Deegan et al. [8] for
pinned evaporating water droplets.

Evaporation of very thin films is even more complicated as they can interact with the
substrate through van der Waals forces and electrostatic forces. Experiments on evaporating
thin films of water were performed by Elbaum and Lipson [9], who observed the nucleation
of thin patches in thicker films. The stability of these thin films bas been studied theoretically
by Burelbach et al. [10], Samid-Merzel et al. [11] and Lyushnin et al. [12]. They assumed
the rate of evaporation to be proportional to the difference of chemical potential between
the liquid and its vapour, and neglected diffusion of vapour in the gas phase. In contrast, we
focus here on the evaporation of very thin liquid films of polar liquids in the case where the
diffusion of vapour is important. In Section 2, we formulate general equations describing the
film evolution and we simplify them when evaporation is diffusion limited. In Section 3, we
solve the diffusion problem for a nearly flat film. In Section 4, we study the linear and the



210 E. Sultan et al.

Figure 1. Model geometry: an evaporating thin liquid film over a solid substrate. The position of the interface
with the gas is defined by h(x, t) and the rate of evaporation is J .

weakly nonlinear stability of a flat film. In the last section, we conclude by discussing the
consequences of our results.

2. The model

2.1. SITUATION OF INTEREST

Our aim is to provide a theoretical description of evaporating thin films of polar liquids when
molecular forces are important, and to account for the diffusive dynamics of the vapour in the
surrounding gas phase. This situation is illustrated for instance by the experiments of Elbaum
and Lipson [9]: water films of typical thickness h0 � 10 nm evaporating in a chamber of
millimetric size (x0 � 1 mm); evaporation leads to a decrease in thickness at a velocity of
order ve � 1 nm/s.

We consider the dynamics of a two-dimensional bi-layered liquid-gas system over a solid
substrate (Figure 1). A two-dimensional geometry is not a restriction for the present linear
and weakly non-linear study: a priori all horizontal directions are equivalent, but one of them
is selected at the growth of the instability (when the system is unstable). The polar liquid
exchanges mass with its vapour which may diffuse in the gas phase. The gas phase is not
saturated by the vapour, which drives evaporation. The state of the system is determined by
the height h(x, t) of the interface and the concentration c(x, z, t) of vapour in the gas phase
(both are functions of space and time). In the following, we restrict our analysis to the long
wavelength limit where the typical height h0 is much smaller than the typical horizontal scale
x0. We write the equations describing the liquid phase, the gas phase and then the proper
boundary conditions.

2.2. THE LIQUID FILM

The long wavelength limit leads to the usual lubrication equation. Here, the film is thin enough
to interact with the substrate. Van der Waals and electrostatic forces (in the case of a polar
liquid) give a correction called the disjoining pressure P(h) to the capillary pressure (see e.g.
[13]). For a non-polar liquid which wets the substrate, P(h) is an increasing function of h

as van der Waals forces are attractive. Electrostatic forces are usually repulsive. Thus, the
interplay between the two forces can result in a disjoining pressure that is a non-monotonic
function of the film thickness (Figure 2). One expects thicknesses corresponding to decreasing



Diffusion-limited evaporation of thin polar liquid films 211

Figure 2. Disjoining pressure: additional pressure for a thin film interacting with a substrate, as a function of the
film thickness. For a polar fluid P(h) may become non monotonic, which suggests an instability.

disjoining pressure to be unstable. The corresponding phenomenon in three dimensions is the
spinodal decomposition of a fluid, that is the demixing into two distinct phases (gas and liquid)
at the limit of metastability. We will consider the vicinity of a thickness h0 in the unstable
region and linear approximation P(h) = P(h0)−α(h−h0), (α � 1011 N/m4 for water, [11]).
The exact form is given in [13], but our formulation is very general and could be applied
if other microscopic forces act on the liquid, the physics giving the value of the coefficient
α. Gravity is negligible as the thickness h0 is microscopic and thus much smaller than the
capillary length. The liquid has a viscosity µ (10−3 Pa.s for water), a density ρ (number of
particles per unit volume) and the surface tension of the liquid-gas interface is γ (70 mN/m
for water). The lubrication equation then reads

∂h

∂t
+ 1

µ

∂

∂x

{
h3

3

(
∂

∂x

(
γ

∂2h

∂x2

)
+ α

∂h

∂x

)}
= −J

ρ
. (1)

J is the liquid rate of evaporation at the interface (number of evaporating particles per unit
surface and unit time).

Here we have neglected temperature fluctuations. If κ = 0·6 kg m/K/s3 is the thermal
conductivity of water and L = 2·4×106 J/kg its vaporization latent heat, then the temperature
gradient �T/h is given by κ�T/h = LJ0, hence a very small temperature fluctuation �T �
4 × 10−8 K. Thus we may safely neglect Marangoni effects. Moreover, evaporation is very
slow, so that it is reasonable not to take into account vapour thrust.

2.3. THE VAPOUR

Vapour diffuses in the gas phase; the diffusion coefficient is D � 10−5 m2/s. If there is
convection in the gas, the convective velocity vC has to be compared to the diffusive one
vD = D/x0 � 1 cm/s. From the Stokes equations, the scale of vC can be estimated as vC �
gδρx2

0/ηg, g being the gravity acceleration, δρ � DJ0x0 � 10−12 kg/m3 the variation in
vapour density and ηg � 10−5 Pa/s the gas viscosity, leading to vC � 10−11 m/s � vD so
convection is negligible. Moreover, as the evaporation velocity ve is very small compared to
vD, we consider the limit of quasi-static diffusion. Hence the vapour concentration c(x, z, t)

(number of particles per unit volume in the gas phase) is a harmonic function:

�c = 0, (2)

� = ∂2

∂x2 + ∂2

∂z2 being the 2D Laplacian operator. The gas phase is not saturated by the vapour.
This condition is enforced by a constant diffusion rate at infinity
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∂c

∂z
∼ −J0

D
, z → +∞. (3)

At large length scales, the film is flat so the mass flux J (z � h0) is vertical and does not
depend on x. The boundary condition at the interface is discussed hereafter.

2.4. THE INTERFACE

The rate of transfer of particles through the interface is proportional to the difference between
the chemical potential of the vapour µv and that of the liquid µl (as given by the kinetic theory
of gases, see [10]) and to the normal gradient of the vapour concentration at the interface:

β(µl − µv) = −D

ρ

∂c

∂n
. (4)

β � 3 × 1025 s/kg/m is a parameter which can be estimated from the kinetic theory of gases.
Let δµ � 4 × 10−21 J be the typical magnitude of the chemical potentials difference. The
vapour concentration is of order c0 � 3 × 1025 m−3. Using µl = δµµ̃l, µv = δµµ̃v and
∂c/∂n = c0/h0(∂/∂ñ)c̃, the non-dimensional form of Equation (4) is

E(µ̃l − µ̃v) = − ∂c̃

∂ñ
, E = ρβh0δµ

Dc0
.

In references [10, 12, 11], diffusion of vapour was neglected. This corresponds to E � 1,
hence ∂c/∂n = 0 and the evaporation rate is J = β(µl − µv). Using the typical values given
above , one obtains E � 105, so we investigate the opposite case for which E � 1 and where
evaporation is limited by diffusion of the vapour in the gas phase. In this limit, the chemical
potentials are equal µl = µv . Using references [13, 11], µv = kBT log(c/c0), kB being the
Boltzmann constant and T the temperature, while µl = −(αh + γ ∂2h/∂x2)/ρ, ρ being the
liquid density. We consider here the limit such that (αh + γ ∂2h/∂x2)/(ρkBT ) � 10−5 � 1,
i.e., the variations in c are small with respect to c0, so that the boundary condition the vapour
concentration at the interface becomes

c = c0 z = h(x, t). (5)

Thus the Laplacian problem for the vapour concentration is well-posed. More-over, the evap-
oration rate is given by

J = −D
∂c

∂n
, z = h(x, t). (6)

2.5. NON-DIMENSIONAL EQUATIONS

We use h0 as unit of length, hoρ/J0 as unit of time and J0h0/D as unit of vapour concen-
tration. Keeping the same notations for the non dimensional quantities as for their physical
counterparts, we make the substitutions

h → h0h, x → h0x, t → (h0ρ/J0)t, c → c0 + (J0h0/D)c, J → J0J, (7)

in the lubrication equation, the Laplace equation and the boundary conditions. First, the
lubrication equation (1) becomes



Diffusion-limited evaporation of thin polar liquid films 213
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(
h3

3

∂h
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)
= ∂c

∂n
(z = h(x, t), t) = −J. (8)

Ca is the capillary number

Ca = µJ0

ργ
(9)

and 
 is the van der Waals number


 = αρh2
0

µJ0
, (10)

which measures the importance of microscopic forces. Their typical values are respectively
Ca � 10−11 and 
 � 107.

The reduced vapour concentration is the solution of the following Laplacian problem

�c = 0, z > h(x, t), c(h(x, t), t) = 0,
∂c

∂z
(z = +∞, t) = −1, (11)

which is solved in the next section.

3. The Laplacian problem for the vapour concentration

In this section, we show how to solve the Laplace problem (11) and compute the evaporation
rate for a nearly flat interface. The lubrication equation (1) is obtained as an approximation of
the Stokes equations to order three in the height profile h (see e.g. the asymptotic derivation
in [1]). So we compute the evaporation rate to order 3 in the height perturbation. For other
applications, computation to higher orders is possible along the same lines.

3.1. THE VAPOUR CONCENTRATION

We formally rewrite the Laplacian problem (11) as

�c(x, z) = 0, z > εh(x), c(εh(x, t)) = 0,
∂c

∂z
(x, z = +∞) = −1. (12)

ε is a formal small parameter for the expansion in powers of h(x, t). We assume the form

c = c0 + εc1 + ε2c2 + · · · (13)

for the field c, each cn being a harmonic function. At order 0, the solution is simply linear:

c0 = −z. (14)

The boundary condition at the interface reads

0 =
+∞∑
n=0

εnh(x)n

n!
∂nc

∂zn
(x, 0),

so that, up to order 3 in ε,
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0 = c0(x, 0) + ε

{
c1(x, 0) + h(x)

∂x0

∂z
(x, 0)

}

+ε2

{
c2(x, 0) + h(x)

∂c1

∂z
(x, 0) + h(x)2

2

∂2c0

∂z2
(x, 0)

}

+ε3

{
c3(x, 0) + h(x)

∂c2

∂z
(x, 0) + h(x)2

2

∂2c1

∂z2
(x, 0) + h(x)3

6

∂3c0

∂z3
(x, 0)

}

+ · · ·

(15)

Now the problem (12) consists of finding the harmonic functions cn, with n = 1, 2, 3 . . .

which satisfy ∂c/∂z(x,+∞) = 0 and the order n of the boundary condition (15) which is
expressed at a flat boundary z = 0.

Order ε1: The boundary condition (15) gives c1(x, 0) = h(x). A Fourier decomposition leads
directly to

c1(x, z) =
∫

dkF [h](k)eikx−|k|z = F −1(e−|k|zF [h]). (16)

The x-Fourier transform of a function f (x) is defined as

F [f ](k) = 1

2π

∫
dxf (x)e−ikx .

Order ε2: The boundary condition (15) is rewritten as

c2(x, 0) = −h(x)
∂c1

∂z
(x, 0) = F −1(F [h])F −1(|k|F [h])

Introducing convolutions (denoted as ∗), this leads to

c2(x, z) = F −1 (
e−|k|z {F [h] ∗ (|k|F [h])}) . (17)

Order ε3: The boundary condition (15) is rewritten as

c3(x, 0) = h(x)F −1(|k|{F [h] ∗ (|k|F [h])}) + h(x)2

2

d2h

dx2
(x).

so that, using Fourier transform and convolutions, we obtain

c3(x, z) = F −1 (
e−|k|z {F [h] ∗ (|k| {F [h] ∗ (|k|F [h])})})

+1

2
F −1

(
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{
F

[
h2 d2h

dx2

]})
.

(18)

Thus we have found the concentration of vapour up to order 3 in the height.

3.2. THE EVAPORATION RATE

The evaporation rate is given by

J = ‖∇c‖z=εh(x) =
√(

∂c

∂x
(x, εh(x))

)2

+
(

∂c

∂z
(x, εh(x))

)2

. (19)
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c was computed in the previous section. The expansion in powers of ε is similar to that in
Equation (15). The calculations are done with a substantial use of the property

F −1 (|k|F [f ]) = − d

dx
H [f ],

the Hilbert transform (see appendix A) of a function f being defined as

H [f ](x) = 1

π
lim
ε→0+

X→+∞

∫
ε<|x−x ′|<X

dx′ f (x′)
x′ − x

where Cauchy principal values are taken for the integral.
Combining all the results and setting ε = 1 leads to the following expression for the

evaporation rate.
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H
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d

dx
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h2 d2h
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+O(h4).

(20)

This equation combined with Equation (8) gives an integro-partial-differential equation for
the evolution of the film thickness h. This is not surprising for a free-boundary problem with
a Laplacian or a diffusion field.

4. Stability of a film of uniform thickness

4.1. LINEAR STABILITY

Equations (8–11) have as solution for the film thickness h(x, t) = 1 − t . As this base state is
non-stationary, linearization of the equations gives a non-autonomous PDE, so that standard
linear stability (modal) analysis should not apply. For simplicity, we assume from now on that
the base state is h(x, t) = 1, which amounts to adding a volume source ρJ0 to Equation (1),
as this source compensates exactly for the loss of mass through evaporation. It also amounts
to a stability study of the time-dependant base state h(x, t) = 1 − t in the frozen frame.

We set h(x, t) → 1 + h(x, t) in (8,20). The linear part of the evolution operator for h is
easily computed as

L = ∂

∂t
+ 1

3Ca

∂4

∂x4
+ 1

3



∂2

∂x2
− ∂

∂x
H . (21)

This operator has eigenmodes of growth rate � and wavenumber k : h(x, t) = A exp(�t +
ikx) + c.c., such that

�(k) = − 1

3Ca
k4 + 


3
k2 − |k|. (22)
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Figure 3. Top: growth rate �(k) of perturbations of wavelength k, for a capillary number Ca = 10−3 and three
values of the van der Waals number n. Bottom: stability diagram of a flat film.

This shows that the interaction with the substrate is destabilizing as could be expected when
considering the decreasing part of the disjoining pressure (see Figure 3), whereas both evap-
oration and capillarity are stabilizing (first and last term of right-hand side of the equation).
The electrostatic analog of the Laplace problem (11) helps understanding why evaporation
is stabilizing: the electrostatic potential (the concentration) is constant at the surface of a
conductor; the electric field (the evaporation rate) is larger at bumps; so evaporation decreases
the height of bumps. Typical growth rates �(k) are shown in Figure 3. The limit of stability
is reached when there is one (and only one) marginally stable mode (�(k = kc) = 0 and
�′(k = kc) = 0), so that at the instability onset (subscripts c)

Cac

3
c = 243/4, kc =

√
Cac
c

3
. (23)

The uniform film is unstable when 
 > 
c(Cac) or when Ca > Cac(
c). The corresponding
stability diagram is shown in Figure 3. With the values of the capillary and Van der Waals
numbers given earlier, the film is unstable; the resulting pattern has a wavelength of the order
of 10 µm, as observed in [9]. This stability analysis suggests a pattern of wavenumber kc.
However, a nonlinear study is required to predict the patterns when the flat film is unstable.

4.2. WEAKLY NON LINEAR ANALYSIS

We now proceed to the weakly nonlinear analysis to find an amplitude equation for h(x, t).
We use a multi-scale expansion which is valid when the spatial Fourier spectrum of h(x, t) is
concentrated around kc (see Manneville [15, Chapter 8]). We look for an equation of evolution
for the slowly varying function A(X, T ) such that h(x, t) = A(X, T ) exp(ikcx) + c.c. (c.c.
stands for the complex conjugate of the preceding term). Formally, we use ε as an expansion
parameter (this parameter has nothing to do with the one used in Section 3). We assume that
h is a function of both the fast scales x, t and the slow scales X = εx, T = ε2t . This choice
for the slow scales is the natural one given that �(k) is maximum at kc. We consider the
neighbourhood of the marginal stability and we rescale the control parameter as

�(kc) = ε2ω(kc).

From the chain rule for differentiation we must make the replacements

∂x → ∂x + ε∂X, ∂t → ∂t + ε2∂T .
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Figure 4. Stability diagram of the stationary pattern (control parameter p vs. wavenumber Q) as deduced from
Equation (26): with the nonlocal term (left) and without (right). The flat film is stable only below the grey area.
The pattern with wavenumber kc + Q is stable only above the grey area. None of them is stable in the grey area.

We also assume that h can be expanded as

h(x, t) = εh1(x, t) + ε2h2(x, t) + · · ·
The procedure to obtain the amplitude equation (equation for A(X, T )) is quite standard

and is detailed in appendix B. However the present case has the peculiarity that the expansion
must be pursued up to order 6 as h1 is found to vanish. This is due to the coupling between the
evaporation rate and the k = 0 eigenmodes of Lc. In the limit kc � 1 which is consistent with
lubrication theory, and after the rescaling X → X/kc and T → T /kc, the amplitude equation
reads

∂T A = pA − 6|A|2A + 3

2
∂XXA − 2i∂XXXA − 1

2
∂XXXXA, (24)

the control parameter being

p = 1

2

Ca − Cac

Cac
+ 9

2


 − 
c


c
. (25)

The solution A = 0 of the amplitude equation becomes unstable when p > 0 (which is
consistent with the linear stability). When p > 0, there is a family of stationary solutions
indexed by the wavenumber Q : A(X, T ) = A0 exp(iQX), A0 being given by p = 6|A0|2 +
3/2Q2 + 2Q3 + 1/2Q4. They correspond to a stationary pattern with thickness fluctuation
h(x, t) = A0 exp {i(kc + εQ)x}, which is modulated around the critical wavenumber kc. Thus,
as the prefactor of |A|2A is negative, the transition from the flat state (A = 0) to a state with
height fluctuations is a supercritical (continuous) pitchfork bifurcation.

4.3. NON-LOCALITIES AND SECONDARY INSTABILITIES

We have simplified the amplitude equation (B11, Appendix B) in the limit kc → 0 to obtain
(24); at finite kc, unusually it is an integro-differential equation which is well posed only if
A(X, T ) vanishes quickly at |X| = +∞. In order to illustrate the role the non local terms, we
keep the simplest one, that is 3iH

[|A|2] A. This term does not affect the stationnary states
nor the nature of the bifurcation as H

[|A|2] = 0. We also drop, for simplicity, the third and
fourth spatial derivatives of the amplitude (this amounts to an expansion at lowest order in the
wavenumber and does not affect the nature of the secondary instabilites) so that we study the
model equation:

∂T A = pA − 6|A|2A + 3

2
∂XXA + 3iH

(|A|2) A. (26)
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It has A0 exp(iQX) as a stationary solution provided p = 6|A|2+3/2Q2 (and so p > 3/2Q2).
We study the linear stability of the stationary pattern by perturbing it with a different

wavenumber:

A(X, T ) = A0eiQX + (aei(Q+q)X + bei(Q−q)X)esT , (27)

where s is the growth rate and q the reduced wavenumber of the perturbation. The two terms
are needed in the perturbation because of the non linear coupling between modes: Q + Q −
(Q + q) → Q − q. Linearization of Equation (26) gives an equation for the perturbation
growth rate

s2 + (
3Q2 + 12A2

0

)
s + 9/4A4 + (

18A2
0 − 9q2) Q2 − 18A2

0Q|q| = 0. (28)

This equation has two solutions. One is always negative. If the other is positive then the
stationary pattern is unstable. Its sign is that of 9/4Q4 + (18A2

0 − 9q2)Q2 − 18A2
0Q|q|. This

way we obtain the stability diagram of the stationary pattern (Figure 4), which is very different
with or without the non-local term. The corresponding secondary instability is usually called
the Eckhaus instability (see [15]).

5. Conclusion

Very thin films of polar liquids may be unstable to fluctuations of the thickness when the
disjoining pressure is a decreasing function of thickness. We studied this instability in the pres-
ence of diffusion limited evaporation and obtained a stability diagram. Expressing Equation
(23) in terms of physical quantities, the instability criterium reads

ρ2α3h6
0

γ µ2J 2
0

� 1, (29)

α being the opposite of the derivative of the disjoining pressure with respect to the thickness,
γ the liquid-gas surface tension, µ the liquid viscosity, ρ its density, J0 the imposed vapour
diffusion rate far from the liquid and h0 the typical thickness of the liquid film. Both evap-
oration and capillarity are always stabilizing. The instability can be driven by a decreasing
disjoining pressure, which is the case for thin films (thickness in the range 1–100 nm) of polar
liquids such as water. In particular, the numerical values of Elbaum and Lipson [9] lead to an
instability of typical wavelength 10 µm in agreement with their observations.

We derived an amplitude equation for the thickness fluctuations. It showed that the trans-
ition from the flat state to a periodically modulated thickness is continuous. In contrast with
usual amplitude equations, it contains non-local terms. For instance, even with an integro-
differential equation for the height as in the Rosensweig instability of ferrofluids, Friedrichs
and Engel [14] found a local amplitude equation. These non-local terms are important when
the amplitude varies spatially or for the stability of the stationary pattern. As an example, we
showed that the classical Eckhaus instability may be dramatically changed.

Evaporation of thin films is more complex than it might appear, and many questions re-
main open. We have restricted our study to diffusion limited evaporation. Much more work is
required to bridge the gap with the kinetically limited evaporation studied in [10–12]. It would
also be interesting to further investigate the consequences of the non local terms.
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Appendix A. The Hilbert transform

A.1. DEFINITION AND BASIC PROPERTIES

We define the Hilbert transform with the usual conventions:

H [f ](x) = 1

π
lim

ε→0+
X→+∞

∫
ε<|x−x ′|<X

dx′ f (x′)
x′ − x

(A1)

where we have taken the Cauchy principal value (symmetric limit) both at x and at ∞. The Hilbert transform bas
the property that H−1 = −H , except for constant functions for which the transform is zero (H(Cst) = 0). It is
also easy to show that

F 1 (|k|F [f ]) = − d

dx
H [f ]. (A2)

A.2. HILBERT TRANSFORM AND SLOW SPACE VARYING AMPLITUDE

In the weakly nonlinear analysis, we have to compute quantities of the form H
[
A(εx)eikcx

]
, with 0 < ε � 1.

We show here that

H
[
A(εx)eikcx

]
= A(εx)H

[
eikcx

]
, (A3)

is a good approximation for ε sufficiently small (actually ε < |kc|). This formula was first given without a validity
criterium by Friedrichs and Engel [14]. The result is obvious if ε = 0. Since Aε(x) = A(εX) varies significantly
only for a variation of x of the order of 1/ε, the Fourier transform F [Aε](k) of Aε must be negligible outside
(−ε, ε).

Let us first assume that the support of F [Aε](k) is included in (−ε, ε) (i.e., it vanishes outside). Then, using
H [eikx ] = i sgn keikx(sgn k = ±1 if ±k > 0), we have

H
[
Aε(x)eikcx

]
= ieikcx

∫ ε

−ε
dkF [Aε] (k)sgn(k + kc)e

ikx.

Thus, (A3) is prooved if ε < |kc|.
If F [Aε](k) does not vanish outside of (−ε, ε), one can show that, when ε < |kc|, the error for (A3) is of the

order of
∫ ∞

1/ε F [A](k)dk.

Appendix B. Weakly nonlinear analysis

Here we detail the weakly nonlinear analysis outlined in Section 4.2. We consider the neighbourhood of the
stability limit, so that we rescale the control parameter according to

�(kc) = ε2ω(kc)

We start with Equations (8,20), assume that h is a function of x, X, t, T (fast and slow scales) and substitute the
derivatives according to

∂x → ∂x + ε∂X, ∂t → ∂t + ε2∂T .

The height h is expanded as

h(x, t) = εh1(x, t) + ε2h2(x, t) + · · · .

Equations (8,20) can be formally rewritten as
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Lh = N (h),

L being the linear part of the evolution operator which is expanded as L = Lc + εL1 + ε2L2 + · · · ,

Lc = 1

3Ca

∂4

∂x4
+ 1

3



∂2

∂x2
− ∂

∂x
H , L1 =

{
4

3Ca

∂3

∂x3
+ 2

3



∂

∂x
− H

}
∂

∂X
,

L2 = −ω(kc) + ∂

∂t
+

{
2

Ca

∂2

∂x2
+ 1

3



}
∂2

∂X2
,

L3 = 4

3Ca

∂

∂x

∂3

∂X3
, L4 = 1

3Ca

∂4

∂X4
.

We now proceed to the solution order by order.

Order ε1: The equation is linear

Lch1 = 0. (B1)

Since the null space of Lc also contains slow space varying height profiles (i.e., functions of X) the general solution
is h1 = (A11(X, T )eikcx + c.c.) + A10(X, T ), where the kc wavenumber is given by the linear stability analysis
(Section 4.1).

Order ε2: The equation has the form

Lch2 = −L1h1 − N (2)(h1). (B2)

We find L1h1 = −∂XH
[
A10

]
and, decomposing N (2)(h1) into its Fourier modes (N22eikcx+c.c.)+(N21eikcx+

c.c.) + N20,

N22 =
{

−2k2
c 
 + 2k4

c

Ca
+ 1

2
k2

c

}
A2

11, N21 =
{

k4
c

Ca
− k2

c


}
A11A10,N20 = −K2

c |A11|2 .

The right-hand side must be orthogonal to the null space of Lc so that N21 = 0 and ∂XH [A10] = −k2
c |A11|2.

It implies h1 = 0, thus Lch2 = 0. The solution to (B2) is then h2 = (A21(X, T )eikcx + c.c. + A20(X, T ).

Order ε3: Due to h1 = 0, the equation does not contain nonlinear contributions

Lch3 = L1h2. (B3)

Again, the right-hand side has to be orthogonal to the null space of Lc, so that A20 = 0. Thus, h3 = (A31(X, T )eikcx+
c.c) + A30(X, T ). In contrast with standard weakly nonlinear studies [15], this order does not give the amplitude
equation.

Order ε4: The equation is

Lch4 = −L1h3 − L2h2 − N (4)(h2), (B4)

where

N (4)(h2) = (N42eikcx + c.c.) + N40,

N42 =
{

−2k2
C
 + 2k4

c
Ca

+ 1

2
k2

c

}
A2

21, N40 = −k2
c |A21|2.

The secular part of N (4)(h2) vanishes since A20 = 0.
The right-hand side of Equation (B4) must be orthogonal to the null space of Lc so that

− ∂

∂X
H [A30] = k2

c |A21|2 (B5)

(
∂

∂T
) − ω(kc) +

{
1

3



∂2

∂X2
− 2

Ca
k2

c

}
∂2

∂X2

)
A21 = 0. (B6)
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The solution to (B4) is

h4

(
A42(X, T )e2ikcx + c.c.

)
+

(
A41(X, T )eikcx + c.c.

)
+ A40(X, T ),

where

A42 = 1

�(2kc)

{
−2k2

c
 + 2k4
c

Ca
+ 1

2
k2

c

}
A2

21.

Order ε5: The equation is

Lch5 = −L1h4 − L2h3 − L3h2 − N (5)(h2, h3), (B7)

where

N (5)(h2, h3) = N52e2ikcx + c.c.) + (N51eikcx + c.c.) + N50,

N52 =
(

4k4
c

Ca
− 4
k2

c + k2
c

)
A31A21 + i

(
−8k3

c
Ca

+ 4
kc − kc

)
A21

∂A21

∂X

N51 =
(

−
k2
c + k4

c
Ca

)
A30A21

N50 = −k2
c (A31A21 + A21A31) + kc

(
i
∂A21

∂X
A21 − i

∂A21

∂X
A21

)
.

The right-hand side of Equation (B7) must be orthogonal to the null space of Lc so that(
−
k2

c + k4
c

Ca

)
A30A21 + 4(ikc)

3Ca

∂3A21

∂X3
+

{(
−2k2

c
Ca

+ 


3

)
∂2

∂X2
− ω(kc) + ∂

∂T

}
A31 = 0, (B8)

∂

∂X
H

[
A40

] = A30 + 


3

∂2

∂X2
A30 + ∂

∂T
A30 + N50. (B9)

Even if (B8) is nonlinear in A21 (see (B5)), it does not give the nature of the bifurcation. This is why we carry on
computations to next order.

The solution at this order is

h5 = (A52(X, T )e2ikcx + c.c.) + (A51(X, T )eikcx + c.c.) + A50(X, T ),

where

A52 = 1

�(2kc)

(
N52 + i�′(2kc)

∂

∂X
A42

)
.

Order ε6: The equation has the form

Lch6 = −L1h5 − L2h4 − L3h3 − L4h2 − N (6)(h2, h3, h4) (B10)

We only need the part of N (6) which has wavenumber kc:

N61 =
(

−
k2
c + k4

c
Ca

− 7k3
c

2

)
A21A

2
21 +

(
−
k2

c + 7k4
c

Ca

)
A42A21

+i

(
2
kc − 4k3

c
Ca

)
A30

∂

∂X
A21 +

(
−
k2

c + k4
c

Ca

)
A31A30

+i

(
2
kc − k3

c
Ca

)
A21

∂

∂X
A30 +

(
k4

c
Ca

− 
k2
c

)
A40A21

−kcA21
∂

∂X
H

[
A30

]
.
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After solving Equations (B5,B9) for A30 and A40, we use the solvability condition that the right-hand side of
(B10) is orthogonal to the null spare of Lc and we obtain an equation for A41. Introducing

A = εA11 + εA21 + εA31 + εA41 + · · · ,

The last equation for A41 can be resummed with Equations (B6,B8) for A21 and A31. We finally obtain the
amplitude equation A(X,T ):{(

− 2

Ca
k2

c + 


3

)
+ i

(
4

3Ca
kc − 


3

)
∂

∂X
+ 1

3Ca

∂2

∂X2

}
∂2A

∂X2

−�(kc)A + ∂A

∂T
+ γ |A|2A + i

(
2
k3

c − 4k5
c

Ca

)
H

[∫
|A|2

]
∂

∂X
A

−i

{
k2

c

(
2
kc − k3

c
Ca

)
− kc

(
k4

c
Ca

− 
k2
c

)}
H

[
|A|2

]
A

+
(

k4
c

Ca
− 
k2

c

){
k2

c

� (
−�(kc) + ∂

∂T
+ ∂

∂X
H

)
|A|2 + 2ikc

∫
H

[
A

∂A

∂X

]}
A = 0,

(B11)

where

γ =
(

−
k2
c + k4

c
Ca

− 7k3
c

2

)
+ 1

�(2kc)

(
−
k2

c + 7k4
c

Ca

)(
−2k2

c 
 + 2k4
c

Ca
+ 1

2
k2

c

)

+k3
c +

(
k4

c
Ca

− 
k2
c

)(

k2

c
3

− 2kc

)
.

The simplification of the amplitude equation in the limit of small kc is given in Section 4.2.
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